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Abstract 

Ideal cloud-resolving models contain little-accumulative errors. When their domain 

is so large that synoptic large-scale circulations are accommodated, they can be used 

for the simulation of the interaction between convective clouds and the large-scale 

circulations. This paper sets up a framework for the models, using moist entropy as a 

prognostic variable and employing conservative numerical schemes. The models 

possess no accumulative errors of thermodynamic variables when they comply with a 

discrete constraint on entropy conservation and sound waves. Alternatively speaking, 

the discrete constraint is related to the c o m t  representation of the large-scale 

convergence and advection of moist entropy. 

Since air density is involved in entropy conservation and sound waves, the 

challenge is how to compute sound waves efficiently under the constraint. To address 

the challenge, a compensation method is introduced on the basis of a reference 

isothermal atmosphere whose governing equations are solved analytically. Stability 

analysis and numerical experiments show that the method allows the models to 

integrate efficiently with a large time step. 



1. Introduction 

Massive parallel computation upgrades the environment for atmospheric modeling 

by domain decomposition (e-g., Droegemeier et al. 1995, Juang et al. 2003), breeding 

the next generation of cloud-resolving models (e.g., a global cloud-resolving model). 

The future models will take so large a domain that they simulate both convective 

clouds and large-scale circulations explicitly, addressing the interaction among 

clouds, radiation and large-scale circulations. In contrast to current cloud-resolving 

models, the future models will possess little accumulative errors for the correct 

simulation of large-scale circulations. 

Large-scale circulations are governed by thermodynamics in the Tropics 

(Raymond 1995, 2000; Raymond and Zeng 2000; Zeng, Tao and Simpson 2004). 

Zeng, Tao and Simpson (2004) used the analytical model of Neelin and Held (1987) 

to show the sensitivity of tropical large-scale vertical circulations to atmospheric 

cooling rate. Their results indicated that, for the correct simulation of tropical large- 

scale vertical circulations, the accumulative temperature error should be much less 

than 1 K/day, the order of the atmospheric radiative cooling rate. In other words, the 

accumulative temperature error should be -lo-' Wday or less for the simulation of 

large-scale circulations. 

On the basis of the scale analysis of atmospheric convection (Ogura and Phillips 

1962), the current cloud-resolving models were constructed to simulate individual 

cloud systems for life-cycle characteristics (e.g., Klemp and Wilhelmson 1978, 

Grabowski 1989, Tao and Simpson 1993, Tompkins and Craig 1998, Xue et al. 2000, 

Tao et aZ. 2003). Some small terms were usually ignored for economical computation, 

which may distort the simulation of large-scale circulations. For example, the sink of 

moist air was ignored in expressing the air mass continuity equation in terms of the 



density of moist air. The approximation of no moist air sink can bring about an 

accumulative temperature error of IO-’  day with a large-scale vertical velocity of 1 

4 s  (see Appendix A). Although such error can be ignored in the simulation of 

individual cloud systems for life-cycle characteristics, it can distort the simulation of 

tropical large-scale circulations. 

Moreover, numerical errors can distort the simulation of large-scale circulations. 

The current cloud-resolving models usually employ temperature (or its equivalent) as 

a prognostic thermodynamic variable. They compute sound waves economically with 

some approximations. If the approximations violate energy conservation, the 

accumulative temperature error may not be less than 10” Wday. Consider a cloud- 

resolving model with a 10-second time step and a random temperature error around 

lo-’ H in one integration step. When the random error is averaged over many grid 

points and time levels, its value can exceed K statistically in many cases, where 

the mor of 10-~ K per step corresponds to an accumulative temperature error of IO-* 

W h y .  Hence, large numerical errors can sometimes distort the simulation of large- 

scale circulations. 

The new trend is to replace temperature with moist entropy as a prognostic 

variable and diagnose the temperature from that and other prognostic variables 

(Raymond and Blyth 1986; Ooyama 1990,2001; Zeng 2001; Zeng, Tao and Simpson 

2004). Moist entropy deals “easily” with the transition between the three water 

phases. If it is used as a prognostic variable, it can reduce numerical errors especially 

those connected with microphysical and dynamic processes (Zeng 2001; Zeng, Tao 

and Simpson 2004). Recently, Ooyama (2001) and Zeng (2001) constructed two- and 

three-dimensional models with moist entropy as a prognostic variable, respectively, to 

simulate warm clouds. Zeng, Tao and Simpson (2004) derived an accurate equation 



for moist entropy, providing a theoretical basis for using moist entropy as a prognostic 

variable in long-term cloud modeling. Hence, one possible framework for the 

simulation of the large-scale circulation is a cloud-resolving model with moist entropy 

as a prognostic variable. 

If a cloud-resolving model uses moist entropy as a prognostic variable and 

discretizes the moist entropy and other prognostic thermodynamic variables in 

conservative forms, it contains no accumulative error of the prognostic 

themcdynamic variables. Since temperature is diagnosed from the moist entropy and 

the other prognostic thermodynamic variables, the model contains no accumulative 

temperature error either. However, the conservative discrete form of the moist entropy 

involvesair density, and the air density is related to sound waves through the air mass 

continuity equation. Although sound waves are meteorologically unimportant, their 

phase speed limits the time step for integration. Thus, the challenge is how to compute 

sound waves economically while conserving moist entropy (see Section 2 for more 

discussion). 

M a n y  good numerical schemes for s o u n d m m k  

modeling of individual cloud systems (e.g., Klemp and Wilhelmson 1978, Anderson, 

et d. 1985, Droegemeier and Wilhelmson 1987, Skamarock and Klemp 1992) and 

long-term cloud ensemble modeling (Zeng 2001, Satoh 2002). However, those 

schemes do not suit the cloud-resolving model well for the simulation of large-scale 

circulations, because the model is expected to possess the following three 

characteristics: (1) efficient computation with a single processor and highly efficient 

massive parallel computation with lo2- io3 processors, (2) entropy or energy 

conservation, and (3) no accumulative error even from the computation of sound 

waves. To prepare such models for the simulation of large-scale circulations, this 
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paper introduces an efficient method for computing sound waves on the basis of a 

reference atmosphere whose governing equations are solved analytically. 

With the explicit simulation of convective clouds and large-scale circulations as 

the background, this paper proposes a framework for future cloud-resolving models 

and deals with the computation of sound waves in the framework. The paper consists 

of five sections. Section 2 introduces a framework for cloud-resolving models with 

moist entropy as a prognostic variable. It explains a discrete constraint on entropy 

conservation and sound waves that corresponds to no accumulative error of 

thermodynamic variables. Section 3 develops an efficient method to compute sound 

waves, aid Section 4 tests rhe method with numerical experiments. Section 5 gives a 

summary. 

2. Entropy conservation and sound waves 

Accumulative m o r s  in a numerical model originate in the continuous governing 

equations and their discretization. When the air mass continuity equation is expressed 

in the density of moist air and the sink of moist air due to water vapor condensation is 

ignored, there is an accumulative temperature error in the continuous governing 

equations. The error, as shown in Appendix A, is so large that it sometimes can distort 

the simulation of tropical, large-scale circulations. To remove the error and similar 

others, a fi-amework for cloud-resolving models is set up for the simulation of large- 

scale circulations. 

a. A framework for cloud-resolving models 

A framework is set up for cloud-resolving models with no accumulative error of 

thermodynamic variables, where the density of dry air and the moist entropy are used 
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as prognostic variables. Specifically speaking, the density of dry air p is used to 

rewrite the ideal gas law, the air mass continuity equation and the flux form of 

prognostic thermodynamic variables. 

The ideal gas law for moist air is written as 

p = pRdT(l+ 1.608qv) (2.1) 

where p is the total pressure of moist air, T the air temperature, qy the mixing ratio of 

water vapor and Rd the gas constant of dry air. 

The momentum equation for moist air (including precipitating particles) is written 

as 

where v is the velocity vector and g the acceleration due to gravity; D, represents the 

subgrid diffusion of momentum due to turbulence; K E $V - V is the kinetic energy 

per unit mass; q = p-'@x v + 2Q) is the vorticity divided by air density where SL is 

the angular velocity vector of the Earth's rotation; qt is the total mixing ratio of 

airborne water and qp the mixing ratio of precipitating particles. If qc, 4i7 q,, qs and 4g 

denote the mixing ratios of cloud water, cloud ice, rainwater, snow and grauplehail, 

respectively, the total mixing ratios of airborne water and precipitating particles are 

expressed as 

qt = q v  + q c  +qi 

4 p  =4, +4, +qg 

The mass continuity equation for dry air is 

(2.3) d,p + v * (pv) = 0 

and the prognostic equation for a scalar @is 
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+ v * ( P V 4  = P(M, + D,) (2.4) 

where Me refers to the microphysical processes in clouds and D, the scalar subgrid 

mixing due to turbulent eddies. 

The symbol #in Equation (2.4) represents s the moist entropy, qf, qj, qr, qs and qg 

the mixing ratios of airborne water, cloud ice, rainwater, snow and graupeyhail. 

Following the notation of Tao and Simpson (1993), the microphysical processes are 

described by Me (+, qr , qi, qr,  4s and qg)  or 

M ,  = E, + S, + S ,  - (Tgc + T,) (2.5a) 

- Q 1  M =-Si-T' (2.5b) 

M ,  = p-'dz (PV,q, 1 - E, - F, - F, - Tgr (2.5~) 

M, = P - q  ( P Q , )  - s, + F, - Tq, (2.5d) 

M g g  = @'a, @Vgq, ) - s, +- F, - Tqx (2.5e) 

M ,  = G, + ( Q -  v . D , ) / T  (2.5f-l 

where Vt is the terminal velocity of precipitating particles; E, F and S stand for 

evaporation, fusiodfieezing and sublimatioddeposition, respectively; and Tqc, Tqn Tqj, 

T,,, and T,, represent the microphysical transfer rates between hydrometeor species 

and their sum is zero. 

In Equation (2.5f), Q is the rate of diabatic heating and G, the internal source of 

moist entropy; the term -v-D, represents the heat generated by internal friction and is 

introduced for energy conservation. The moist entropy s is defined in unit mass of dry 

air, representing the contribution from dry air, water vapor, cloud water and ice except 

for precipitating particles. The complete flux-form equation for moist entropy was 

introduced by Zeng, Tao and Simpson (2004). In other words, the expression for G, is 

known. 

7 



c 

The models employ the following prognostic variables: the velocity vector v, the 

air density p, the moist entropy s, the total mixing ratio of airborne water qt, the 

mixing ratio of cloud ice qi, and the mixing ratios of rainwater qn snow qs and 

graupelhail 4g. Their corresponding prognostic equations are Equations (2.2), (2.3) 

and (2.4). Once the prognostic variables are known, the total pressure of moist airp is 

determined by Equation (2.11, and the quantities T, q. and qc are diagnosed from the 

prognostic variables s, qf and qi. 

b. A discrete constraint 

Scizlars are conserved in advection, to which the intension of “conservation” is 

confined in this paper. It is easy to apply conservative schemes to Equations (2.3) and 

(2.4). When the scalar @is constant and Mg.Dq.0, the discrete form of Equation (2.4) 

should reduce into that of Equation (2.3)7 which is referred to here as a discrete 

constraint. Recently the constraint has attracted attention because of its importance in 

the construction of a model for the interaction between tropical convection and large- 

scale circulations (Zeng 2001, Arakawa 2004). Zeng (2001) constructed a three- 

dimensional cloud-resolving model under the constraint to simulate tropical 

convective clouds and their interaction with large-scale circulations. Arakawa (2004) 

referred to the constraint as “constancy” warranty and related the constraint to the 

correct representation of the advection and convergence of scalars such as water 

vapor. 

When the models in the preceding subsection employ conservative schemes, the 

constraint corresponds to no accumulative error of thermodynamic variables. In the 

models without the constraint, accumulative errors exist, one of which on 4 is 

understood from the following mathematical operations. Substituting 4 in the discrete 



form of Equation (2.4) withqbqk, then subtracting the discrete form of Equation (2.3) 

times q& yields a resulting equation, where the constant 4 is chosen arbitrarily. In 

comparison with the discrete form of Equation (2.4), the resulting equation contains a 

new string that is composed of all terms with 6. The new string represents an mor 

and is proportional to &. When the error is accumulated, the simulation of large-scale 

circulations may be distorted'. 

In fact, it is easy to discretize Equations (2.3) and (2.4) under the Constraint. A key 

question is how to compute sound waves efficiently under the constraint. Since the 

discrete form of Equation (2.3) is related to sound waves through the ideal gas law, 

the speed of sound waves limits the time step for integration. To construct an efficient 

scheme for sound waves, the ideal gas law or Equation (2.1) is m&ied to 

dp ap aT 1.608 84, p-pRdT(1+1.608q,) - = p(-+-+ -1 - (2.6) 
at pat m i + i . 6 0 8 ~ ,  at rs 

where the relaxation timescale 2; is chosen to be 5 minutes or so. 

Equation (2.6) is close to the ideal gas law. Once it deviates from the ideal gas law 

as it sometimes can due to computational reasons, it soon relaxes to the ideal gas law 

on the timescale z,. Its temporary deviation from the ideal gas law provides room for 

* For a given numerical scheme, the error is estimated as follows. Assume that 9 is constant. 

Dividing the discrete form of Equation (2.4) by @, then subtracting the discrete form of 

Equation (2.3), and finally moving all terms to the right side yields a resulting equation. The 

right side equals zero under the constraint. Otherwise, the right side represents a spurious 

mass sink in a discrete equation for either air mass continuity or scalar advection. The 

spurious mass sink is compared with the sink of moist air due to water vapor condensation, 

estimating the order of the error just as doing in Appendix A. 
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the numerical treatment of sound waves under the constraint and brings about no 

accumulative error of thermodynamic variables. 

3. A compensation method for sound waves 

An efficient method is introduced in this section to compute sound waves under 

the constraint. For simplicity, the method is illustrated in a one-dimensional dry 

model as an example without loss of generality. From Equations (2.2), (2.3) and (2.6), 

the equations for a one-dimensional dry atmosphere are written as 

a,m+aip +pg +-. = o 

a,p + a , p + - -  = o 

a, p - R, n, p + ( p - Md T)Ti' + - - - = 0 

(3.la) 

(3.lb) 

(3.1~) 

where z is the height and w the vertical velocity component; and the temperature Tis 

fixed for the convenience of description. 

In contrast to Equation (3.1), a simple reference isothermal atmosphere is 

introduced with the following governing equations 

a , p u + a Z p + p g  =o  (3.2a) 

(3.2b) 

where the temperature Tref is a constant. Subtracting the left sides of Equation (3.2) 

from both sides of Equation (3.1) yields 

(3.3a) 

(3.3b) 
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where the superscripts (6) and (a) are introduced only to group terms for different 

numerical schemes. Strictly speaking, quation (3.3) is equivalent to Equation (3.1) 

because a variable with the superscript (6) represents the same property of the real 

atmosphere as its corresponding variable with the superscript (a). Hence 

a , p  = a, (p+p+) = a,  ( p u ) ( a )  

a,p = a,pcd) = a p  

(3.4a) 

(3.4b) 

( 3 . k )  a t P  = a,p(d)  = a r P ( a )  

a. Symbol notation 

Equations (3.1), (3.2) and (3.3) are discretized on three time levels, from the time 

level n-1 to n+l, and four sets of symbols are introduced for concise expressions. 

Any variable for a given property in the three equations takes the same values on the 

time levels n-1 and n except for on the time level n+l. The symbols (dn+'), 

pen+") denote the final values of variables on the time level n+l in the numerical 

method, and (w*, p', p*) the values on the time level n+l that are calculated from the 

finite-difference form of Equation (3.1). If (w("+'), p"", p("+'?= (w*, p*, p*) is set, the 

time step for integration is limited by the speed of sound waves, which degenerates 

into a traditional method. 

The symbols (w", d', p") and (w"), p'"', p'"? denote the two sets of variables on 

the time level n+l . They are calculated numerically from the finite-difference form of 

Equation (3.2) and analytically from Equation (3.2), respectively. Because (w", p'@, 

p'@) and (w'"', p'"', p")) approximate the same properties of the reference atmosphere 



in two different ways2, their difference is close to zero theoretically. n u s  the values 

(w*-w(@+dU), p*-,d'+ p", p*-p"+p"') still approximate the solution of Equation (3.1) 

or (3.3) on the time level nt-1. III other words, (w@)-d@, p"-b', ~ ' ~ ' - p ' 9  compensate 

(w*, p*, p*)  for the final values, which increases the maximum time step for stable 

integration and is referred to here as the compensation method. 

The four sets of symbols are illustrated in the preceding paragraphs. Next is the 

computational procedure in the compensation method with uccurate definitions of the 

symbols. Apply similar finite-difference schemes to Equations (3.1) and (3.2), and use 

their discrete forms to calculate (w*, p*, p*) and (d4, b4, p") on the time level n+l, 

respectively. Then introduce the symbols 

s ,  = ((pW)*"+' - (p)'d'"")/2Af (3.5a) 

(3.5b) *n+l - p(d)ntl)/2& s, = ( P  

where Ar is the time step and the superscript n+l is added to distinguish the variables 

on the time level n+l from the variables on other time levels. Using Equations (3.4) 

and (3.3,  Equation (3.3) is rewritten as 

a, (PU) '~ )  + a Z p  +prig = s, 

a , p )  + a, ( p u ) ( a )  = S ,  

(3.6a) 

(3.6b) 

The symbols (w", #4, p'? and (w'"', p'. p'")) refer to the reference atmosphere only in this 

paragraph for easy understanding. They are defined accurately in the following paragraphs. In 

fact, it is unnecessary for a mathematician to introduce the reference atmosphere because the 

method does not need an equation like Equation (3.2). 

12 



with the initial condition 

(pv)W = , p w n - l  

P(") = P"-l 

at r=(n-1)Ar and the boundary condition 

(@p' = pl"-'w;-l at z=o 

(pw)'"' = 0 at z=zlOp, 

(349  

(3.6h) 

where zmp is the height of the top boundary, and the variables with the subscript "I" 

refer to the properties near the surface. 

Equation (3.6) is solved analytically for (da)n+l, fi)n+*, p'"'"') the values at 

r=(n+l)&. From this and Equation (3.4) the final solution of Equation (3.1) at the 

time level n+l is obtained. That is 

wn+l (a)n+l 
-7 

@+l=p(a)n+l 

$+I- -P 

(3.7a) 

(3.7b) 

(3.7c) 

b. Solution expression 

This subsection shows how to solve Equation (3.6) analytically. Let cs+(RdTrd)lR 

denote the sound wave speed in the reference atmosphere and z ~ 2 &  the distance 

that the sound waves travel in 2At. Assume that S,, S,, and S, do not change with 

time between the time levels n-1 and n+l. From the boundary condition of Equation 

(3.6), w and p are set as 

(3.8a) 
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where ps is the surface pressure; and the new variables W ( z ,  ?) and p '(z, 0 satisfy 

d,W'(z,t) + a,p'(z,t) = 0 (3.9a) 

p'(z, t)  = p o ( z )  3 pn-' - p," + g&P"dZ (3.9d) 

at t=(n-l)&. Equation (3.9) is solved analytically, giving 

at t=(n+l)At, where the function WO and po are extended to (--,+..) with their 

symmetry to z d  and G,. 

To calculate w and p on the time level n+l with Equations (3.8) and (3.10), the 

values of w andp on the time level n-1 between grid points are needed. They are 

calculated by linear interpolation. As a side effect of the linear interpolation, sound 

waves are damped. 

The air density is calculated with Equation (3 .6~)  after the pressure p"+' is 

known. Since the pressure p"" is calculated with the aid of linear interpolation, the 

vertical integration of fl'l-6 may not equal zero. For mass conservation, a slight 

adjustment of p' is taken so that the vertical integration of fl+'-p* n+' equals zero. 
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c. Stability explanation 

The numerical stability of the compensation method is analyzed in Appendix B for 

a linear system that is close to the preceding one. Here is a physical explanation for 

the numerical stability. The method, as Equations (3.3) and (3.6) show, works like 

two systems. The two systems step forward in turn. One system is governed by 

Equation (3.3) with zeros on its right sides. Its sound wave speed (Rd (T - Trd))1‘2 is 

low. It is simulated with finite-difference schemes. Its time step is limited by the low 

sound wave speed if no other system is involved. 

The other system is governed by Equation (3.6). Its sound wave speed (R,T, ) I”  

is high. The system is simulated with analytical schemes instead of finite-difference 

schemes. Thus the time step for integration is not limited by the high sound wave 

The two system step forward in turn. First the slow “sound waves” propagate 

locally. Then their residue is carried by the fast “sound waves” into a vast space. As a 

result, the “sound waves” accomplish the adjustment between the velocity and the 

pressure fields in the models even though the “sound waves” do not imitate real sound 

waves well. Since the time step for integration is not limited by the high sound wave 

speed, the models can be integrated with a large time step. The maximum time step 

for stable integration can be determined by the Fourier stability analysis such as in 

Appendix B or the numerical tests in the next section. 

4. Numerical tests 

To test the compensation method, a one-dimensional atmosphere that is governed 

by Equation (3.1) without ellipses is chosen as a test case. Initially the atmosphere is 

stationary and in hydrostatic equilibrium; the surface pressure is 1013.25 hpa; the 
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temperature decreases linearly with height from the surface value of 288 to 216.5 K at 

z=ll  km and remains constant above 11 km. 

located at z=O and a,=18 km. A vertical force 

is applied to a unit mass of air, where the 

The atmospheric rigid boundaries are 

when z<2zt,d3 

timescale 2 4  minutes. The force, 

imitating the buoyancy in convective cells with updrafts and downdrafts in turn, 

drives the atmospheric motion. 

Two experiments with a vertical grid size &,=600 m are done to simulate the 

atmosphere, using the compensation metkid snd the traditional method in Appendix 

B, respectively. A time-smoother (Robert 1966) is used to remove any tendencies that 

might decouple the odd and even steps. In the experiment with the traditional method, 

the time step At=O. 1 seconds although the maximum time step for stable integration is 

close to 1 second. Since the time step is so small, the results in the experiment are 

treated as a standard benchmark to measure the results in the other experiment. One 

result in the experiment, the vertical velocity p / p S  at z=6 km with ppl kg/m3 versus 

time, is displayed in the upper panel of Figure 1, showing the superimposition of the 

oscillations of sound waves on a forced oscillation. 

In the experiment with the compensation method, the time step A k 1 0  seconds, the 

reference temperature Tr~273.15 K, and the relaxation timescale %=5 minutes. The 

vertical velocity at z=6 km versus time is displayed in the lower panel of Figure 1. In 

contrast to the results in the experiment with the traditional method, the forced motion 

due to buoyancy is simulated well although the sound waves are not simulated well. 

The two experiments are re-done to show why the sound waves are not simulated 

well in the compensation method. In the two new experiments, a sponge layer is 
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introduced above 15 km to absorb sound waves. The rnaximum time scale for 

damping sound waves is 30 seconds at the top boundary. Figure 2 displays the same 

variable in Figure 1 for the new experiments. As the figure shows, the forced 

oscillations in the two experiments are similar. In the traditional method, the force 

generates sound waves and the sound waves are damped in the sponge layer. In 

contrast, in the compensation method, not only the force but also the numerical 

schemes generate sound waves. The sound waves are damped not only in the sponge 

layer but also by the numerical schemes. Based on Figure 1, the sound waves are 

mainly damped by the numerical schemes. Otherwise, the amplitude of sound wave 

fluctuation would increase with time. 

Since the numerical schemes in the compensation method generate sound waves 

continuously as computational noise, an interesting question is whether the noise 

affects the simulation of meteorological phenomena. If the numerical scheme for 

scalar advection in Appendix C is used corresponding with the compensation method, 

sound waves bring about no accumulative error of thermodynamic variables. As a 

result, sound waves do not affect meteorological motion. 

Two experiments are conducted to show that sound waves do not affect 

meteorological motion. In one of them, the traditional method with a smal l  time step 

( A d . 1  s) is used, and a sponge layer for sound waves is introduced. Results for the 

first five hours are shown in the upper panel of Figure 2, and the results after 70 days 

are shown by the thick line in Figure 3. Since sound waves are &ped completely in 

70 days, the thick line represents the meteorological motion. In the other experiment, 

the compensation method with a large time step ( k l 0  s) is used, and there is no 

sponge layer for sound waves. Results for the first five hours are shown in the lower 

panel of Figure 1, and the results after 70 days are shown by the thin line in Figure 3. 
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Figure 3 clearly shows that the compensation method simulates the meteorological 

motion quite well in the long-tern integration in the presence of computational sound 

waves. 

5. Discussion and summary 

On the basis of the scale analysis of atmospheric convection (Ogura and Phillips 

1962), almost all current cloud-resolving models ignored some small terms for 

economical computation. Those models have successfully simulated convective cloud 

systems for life-cycle characteristics. When they are extended to the simulation of 

!arge-scale circulations, however, the question is whether the small tenns are still 

ignorable. 

' 

Zeng, Tao and Simpson (2004) used the analytical model of Neelin and Held 

(1987) to diagnose large-scale vertical velocity in the Tropics. Their results showed 

the sensitivity of large-scale vertical circulations to the atmospheric cooling rate and 

the surface flux of moist entropy fiom the underlying surface to the air above. Since 

the atmospheric radiative cooling rate is 1 Wday or so, their results indicate that the 

accumulative temperature error should be equal to lo-* Wday or less for the 

simulation of tropical large-scale vertical circulations. 

Using the value of lo-' K/day as a scale, the approximations in the current cloud- 

resolving models are rechecked for the simulation of large-scale circulations. It is 

found that some approximations should be removed. For example, the density of 

moist air should be replaced with the density of dry air in expressing the air mass 

continuity equation (see Appendix A), and the thermal capacity of precipitating 

particles should be taken into account (Zeng, Tao and Simpson 2004). A discrete 
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constraint on the consistency between the discrete scalar equation and the discrete air 

mass continuity equation should be addressed. 

For the correct simulation of large-scale circulations, a framework is set up for 

cloud-resolving models that use the density of dry air to express the air mass 

continuity equation and employ moist entropy as a prognostic variable. In the models, 

the flux-form equation for moist entropy takes account of the thermal capacity of 

precipitating particles (Zeng, Tao and Simpson 2004). 

The models possess no accumulative error of thermodynamic variables when they 

comply with a discrete constraint on entropy conservation and sound waves. The 

constraint requires that the discrete flux-fonn equation for scalar advection reduce 

into the discrete equation for air mass continuity while the scalar i s  constant. Since air 

density is involved in the flux-form quation for scalar advection and is related to 

sound waves through the air mass continuity equation, the challenge is how to 

compute sound waves efficiently under the constraint. 

To address the challenge, a compensation method is developed for the efficient 

computation of sound waves, where a reference isothermal atmosphere is introduced. 

The governing equations for the reference atmosphere are solved both analytically 

and numerically. The difference between the analytical and the numerical solutions is 

used to compensate the original solution of the models with traditional finite- 

difference schemes. Once the original solution is compensated, the models simulate 

sound waves equivalently by "analytical" schemes rather than finite-difference 

schemes (see the text for an accurate description). As a result, the time step for 

integration is not limited by the high speed of sound waves, and the models can 

integrate efficiently with a large time step. 
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The compensation method for sound waves is tested in a one-dimensional model. 

Numerical experiments show that the method with a large time step is stable and can 

simulate meteorological motions quite well in a long-term integration. On the same 

principle, the method can be extended to multidimensional models easily. The 

compensation method in a three-dimensional, terrain-following coordinate system is 

technically complicated and will be introduced elsewhere as a technical report. 

In contrast to the time-split method (Hemp and Wilhelmson 1978), the 

compensation method needs no small-time-step integration for sound waves. Thus, 

when one processor is used for computation, the models with the compensation 

method PLE s!i&tly €&sr thm those with the time-split method. Recent parallel 

computation tests of the Goddard Cumulus Ensemble model (Tao et d. 2003) on 

memory-distributed machines showed that the efficiency of parallel computation is 

degraded by the data communication between processors in computing sound waves, 

especially while hundreds of processors are used. Without small-time-step integration 

for sound waves, the compensation method is expected to be much more efficient than 

the time-split method in massive parallel computation for cloud-resolving modeling. 
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APPENDlXA 

Analysis of Accumulative Temperature Error 

In this appendix, the temperature error is analyzed in a set of continuous 

governing equations, one of which,.the air mass continuity equation, ignores the sink 

of moist air due to water vapor condensation or deposition. To show the error, the 

density of moist air pI is distinguished from the density of dry air p d  by 

pt = pd (1 + 4,). Differentiating the proceeding relation yields 

(All d In pr I dt = d In pd ldt i- dq, I dt 

If the potential temperature B is described by d8/dt = M e  where Me represents the 

source of potential temperature, the accurate flux form of Bis 

When a cloud-resolving model uses the following prognostic equation 

(A31 
apt@ - 4- v - (P,&> = PrM, 

at 

it possesses a temperature error. The mathematical operation, multiplying Equation 

(A2) by @fPd and then subtracting Equation (A3), yields the expression for the error 

d q v  (z),, - % 
with the aid of Equation (Al). 

In cloudy air, q,,=qVJ the saturation mixing ratio of water vapor. Using the 

Clausius-Clapeyron equation and the hydrostatic balance approximation, the 

proceeding expression for the error is simplified into 
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where w is the vertical velocity, the temperature lapse rate of saturated air, L, the 

latent heat of vaporization and R, the gas constant of water vapor. Let B -T -273 K, 

q,-5 gkg, and fi-0.6~10-~ K/m. Thus (dB/df)qmx - lo-' Wday when d . 0 1  d s .  

The error increases with the vertical velocity. m e n  W=O. 1 m/s, the error is 10'  by, 

which is the order of the atmospheric radiative cooling rate. 

Zeng, Tao and Simpson (2004) used the model of Neelin and Held (1987) to show 

the sensitivity of the large-scale vertical circulations to the atmospheric cooling rate in 

the Tropics. Their results indicated that the accumulative temperature error should be 

- 10" ~/ciay or less for the correct simulation of tropical large-scale vertical 

circdations. Hence the approximation in Equation (A3) should be avoided in the 

numerical simulation of tropical, large-scale circulations. 
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APPENDIX B 

Fourier Stability Analysis 

The computational stability of the compensation method is analyzed in this 

appendix. Similar to the system in Section 3, the following linear system is introduced 

(B la) arw + a Z p  = o 

a,p+azw=o (B 1b) 

a t p  - C;atp + ( p  - c:p)/rs = o (B IC)  

where (w, p, p )  are prognostic variables, and (cs, %) are constants. It is discretized on 

three time levels as 

2At 
A2 

w? = w;-' --(p;+,,2 - p;- l /2)  

where A? is the time step and hz the spatial grid size; the variables w and p are 

spatially staggered; and the variables with an asterisk will be used to calculate their 

final values on the time level n+l. If the variables with an asterisk are treated as their 

final values, Equation (B2) is a traditional method where the time step is limited by c, 

the sound wave speed. 

To increase the time step for integration, the following reference system is 

introduced just as in Section 3 

aZw+ a Z p  = o 

a,p + aZw = o 

a t P  -+,P = o 
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where c, is the sound wave speed in the reference system. Equation (B3) uses the 

same finite-difference scheme as Equation (B2). After the different values of the 

variables on the time level n+l in the two systems are obtained, the expressions for 

S, and S, in Equation (3.5) become 

From Equations (3.8) and (3.10), the final values of the variables on the time level 

n+l are obtained. For the sake of convenience, it is assumed here that r;' = 0 and 

A2 

2, 
At==- 

where m=l, 2, . . . is an integer. With the use of Equations (B4) and (BS) ,  wn+' andpn+* 

are expressed from Equations (3.8) and (3.10) as 

Fourier stability analysis (e.g., Lomax et al. 2001) is applied to Equation (B6). 

Consider a hannonic exp(m + ikz) where k is real. Let o = exp(&) . Thus 1451 for 

numerical stability. Substitution of the harmonic into Equation (66) yields 

(02 - cos~hAz>)2 + o(cfc;2 - 1)(1- cos(kmAz))(02 - cos(hAz)) 
+cos2(~/2)sin2(rbnbz)(l-rr(c,2c,;~ -1)) = 0 037) 

When C,FC,, the expression for ois obtained fiom Equation @7), or 



I c 14= 1 - sin ( k / 2 ) s i n 2  (-1 (B8) 

Thus 1 6 1  which shows that the analytical solution is stable. All modes decay in time 

except for the modes with s i n ( h & )  = 0 .  

When c s a s  and sin(knthz) = 0, the expression for ais obtained from Equation 

0371, or 

laI=1 039) 

when I c:ci2 - 1 I-< 1. Ekption (69) shows that the modes with sin(hAz) = 0 do not 

grow in time when csrfcs. 
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APPENDIX C 

A Numerical Scheme for Scalar Advection in the Compensation Method 

A numerical scheme is introduced in this appendix for scalar advection under the 

discrete constraint. First the discrete air mass continuity equation in the compensation 

method is s- * Then a scheme for scalar advection is proposed on the basis of 

the discrete air mass continuity equation. 

In the compensation method, there is a discrete form of the air mass continuity 

equation 

where Az is the spatial grid size and the variables w and p are spatially staggerd, the 

superscript n and the subscript j indicate time level and space grid-point, respectively; 

the air density pz2 , a temporary value, is different from the final value p;:il2 in the 

compensation metbod. 

Since the time step At is large in the compensation method, the distance that sound 

waves travel in AI is much larger than Az. Thus the cloud-resolving model is 

by not only wj" and w;+] but also the vertical velocity at other grid-points. 

~n the compensation method, p$ is known at last. With reference to wuation 

(Cl), p;$:,, is expressed using wy and $+, in the following form 
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where the equivalent velocity w”) is introduced to explain (P::;,~ - pjy&) the 

deviation of the final air density fiom the prediction of Equation (Cl) at 2At due to 

sound waves. Subtracting Equation (Cl) from (C2) yields 

which determines w“)” with the aid of the boundary condition w‘”’”=w” at z=O and zz,,. 

Obviously w”’ is much smaller than the phase speed of sound waves. 

Once w(”)” is known, it is easy to construct a discrete form of the equation for 

scalar advection under the constraint. With reference to Equation (C2), Equation (2.4) 

can take the following discrete form 

When the scalar @is constant, Equation (C4) reduces into Equation (C2). In other 

words, the scheme in Equations (C2) and (C4) complies with the discrete constraint, 

and Equation (C4) does not change scalar advection. 
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Figure Captions 

Figure 1 The vertical velocity at z=6 km changes with time in the two experiments 

with no sponge layer for sound waves. The results in the traditional and the 

compensation methods are shown in the upper and the lower panels, respectively. 

Figure 2 the same as Figure 1 except that a sponge layer for sound waves is 

introduced. 

Figure 3 The vertical velocity at 2=6 h changes with time in two experiments. The 

thick and the thin lines show the results in the two experiments with the traditional 

and the compensation methods, respectively. In the experiment with the traditional 

method, m . 0 1  s, and a sponge layer for sound waves is introduced. In the 

experiment with the compensation method, A e 1 0  s, and no sponge layer for sound 

waves is used. 
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Figure 1 The vertical velocity at z=6 km changes with time in the two experiments with 

no sponge layer for sound waves. The results in the traditional and the compensation 

methods are shown in the upper and the lower panels, respectively. 
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Figure 2 the same as Figure 1 except that a sponge layer for sound waves is introduced. 
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figure 3 The vertical velocity at z=6 km changes with time in two experiments. The 

thick and the thin lines show the results in the two experiments with the traditional and 

the compensation methods, respectively. In the experiment with the traditional method, 

A d . 0 1  s, and a sponge layer for sound waves is introduced. In the experiment with the 

compensation method, k 1 0  s, and no sponge layer for sound waves is used. 
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